Ana Rita Alves, Cristina Soares, Sónia Figueiredo, Cristina Delerue-Matos, Antón Puga

REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal

Production of biochars from agro-food wastes for environmental applications

Summer Camp | July 7 - 11, 2025 | Marseille, France

Erasmus+

Enriching lives, opening minds.

Higher education

www2.isep.ipp.pt/agrima

Disclaimer

Agri-food Waste Management for Sustainable bio-economy through Higher Education curricula and upskilling

Erasmus+

Higher education

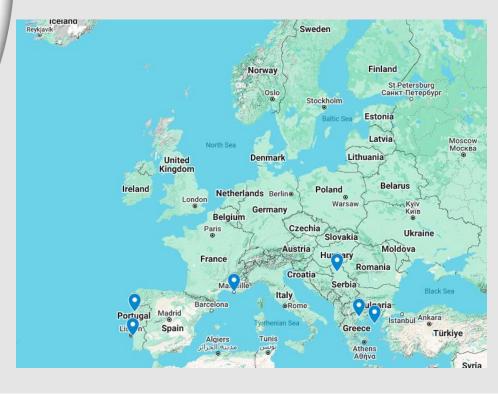
Enriching lives, opening minds.

Goals

AGRIMA aims to foster universities' capacity building for the green transition through innovative practices and higher education curricula updating in agri-food waste management for the circular bioeconomy.

AGRIMA addresses:

- 1. Advancing pedagogical methods for industrial agri-food waste valorisation based on business-academia synergies.
- 2. Integrating citizen science in bio-economy-enhanced waste valorisation as a means of civic engagement and environmental advocacy.



Partners

Emerging Contaminants in Water: The Case of Pharmaceuticals

Water covers about 70% of the Earth's surface

The wastewater treatment plants are not designed to remove emerging micropollutants

Pharmaceuticals are detected in surface waters worldwide at concentrations from ng/L to µg/L

Directive (EU) 2024/3019 introduces stricter rules on micropollutant removal, requiring quaternary treatment to target pharmaceuticals, personal care products, and industrial chemicals.

Biochar: A Sustainable Approach to Water Remediation

What's Biochar?

- Carbon-rich and porous material.
- Its characteristics depend on the thermochemical process conditions and the raw material.

Why Use Agroforestry Wastes?

- Unproperly management of agroforestry waste can cause odour, water pollution, and eutrophication.
- Traditional methods (open burning and poor composting) contribute to air, soil, and water contamination.
- As waste volumes and disposal costs rise, sustainable solutions are urgently needed.

Biochar Production from Basil Residues

Basil residues

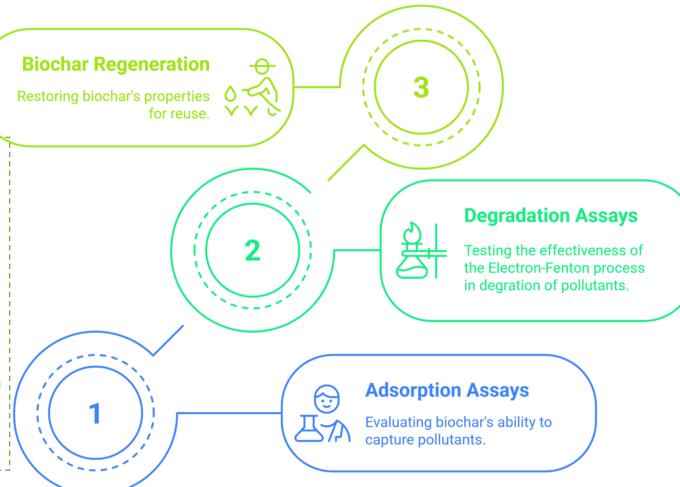
Pyrolysis conditions

- 8 hours of heating time
- 14 hours of holding at 500°C
- Cooling for 18 hours until ambient temperature
- Biochar was ground and separated into different particle sizes: <0.5 mm; 0.5-1 mm; 1-2 mm; >2 mm.

Specific Surface Area = 9.5 m²/g Point of zero charge = 6.91

Basil-derived biochar

Purpose of the Study


Trazodone (TRZ)

Fluoxetine (FLX)

Objective

- Evaluate the adsorption performance of basilderived biochar.
- Investigate the degradation of these pharmaceutical compounds.
- Contribute to the development of sustainable water treatment strategies targeting pharmaceutical contaminants.

Experimental Parameters

Adsorption Assays

Target Contaminants
TRZ & FLX, 5 mg/L each
Volume & Agitation
200 mL, 200 rpm
pH 7-9
Biochar Granulometry
0,5 mm – 2 mm

Degradation Assays

Electro-Fenton Process

Target Contaminants
TRZ & FLX, 5 mg/L each
Volume & Agitation
200 mL, 150 rpm
pH 7-9
Biochar Granulometry
< 0.5 mm
Electrolyte
[Na₂O₄S] = 0.1M

Biochar Regeneration

Solvent
Methanol, 50 mL
Agitation
100 rpm

Performance Results: Adsorption Assays

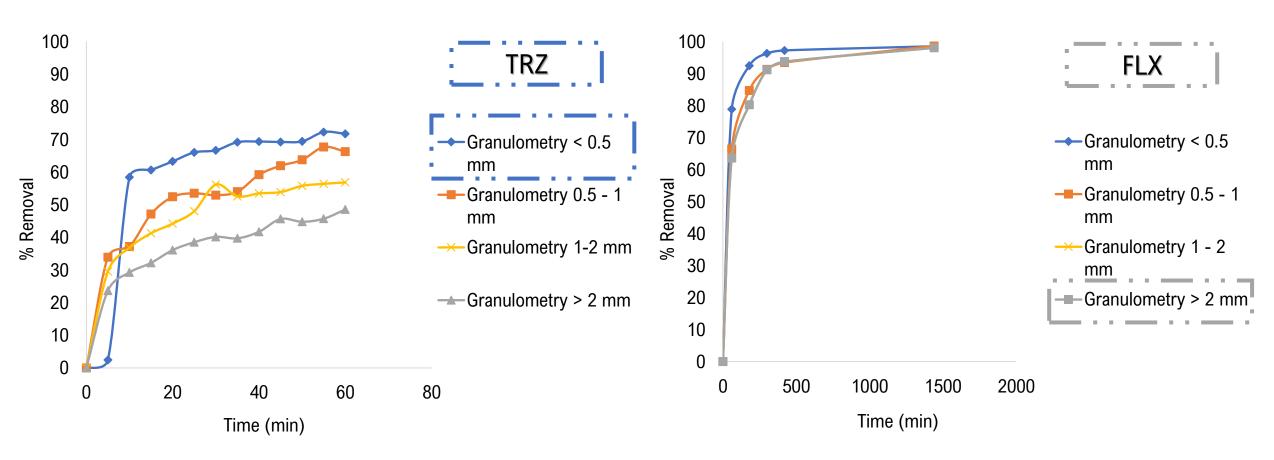
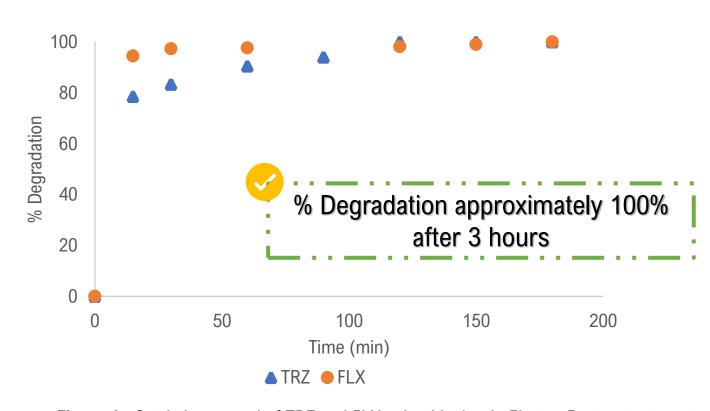


Figure 1 - Adsorption of TRZ using different biochar particle sizes.

Figure 2 - Adsorption of FLX using different biochar particle sizes.



Performance Results: Degradation Assays

Using biochar as a catalyst in an electro-Fenton system

Figure 3 - Experimental setup for degradation assays

Figure 4 - Catalytic removal of TRZ and FLX using biochar in Electro-Fenton treatment.

Biochar Regeneration

Methanol Washing

Biochar is immersed with methanol

Separation

Regenerated biochar is filtered and dried Methanol is collected

Spent Biochar Collection

Biochar after adsorption of pharmaceuticals compounds

Desorption Mechanism

Methanol penetrates porous structure

Reuse Possibility

Regenerated biochar reused in new adsorption cycles

Conclusions and Future Perspectives

Conclusions

Biochar from basil residues showed good adsorption performance for TRZ and FLX. The electro-Fenton process using biochar as a catalyst achieved high degradation efficiency (>99% in 3 hours). Biochar regeneration with methanol proved effective, supporting process sustainability.

Future Perspectives

Test effectiveness in wastewater samples. Explore pilot-scale integration for potential industrial applications. Explore solutions to use the regenerated biochar.

Thank you for your attention!

This work received financial support from the PT national funds (FCT/MECI, Fundação para a Ciência e Tecnologia and Ministério da Educação, Ciência e Inovação) through the project UID/50006 -Laboratório Associado para a Química Verde - Tecnologias e Processos Limpos. This work was also supported through the Biodiversa & Water JPI joint call for research proposals under the BiodivRestore ERA-Net COFUND program, BiodivRestore-406DivRestore/0002/2020, and cofunding by FCT, Portugal and Project PCI2022-132941 cofunding by MCIN/AEI/10.13039/501100011033. Furthermore, this work was funded by the U. Porto innovation agency through the BIP PROOF 2024/2025 call. A. Puga acknowledges FCT for the Ph.D. grant (2021.08888.BD).

