Mariana Gonçalves, Matisse Dewever, Cristina Soares, Cristina Delerue-Matos, Henri Nouws, Manuela M. Moreira

REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal

The Hidden Treasure in Grape Stalks: A Green Extraction Quest

AGRIMA Summer Camp | July 7 - 11, 2025 | Marseille, France

Erasmus+
Enriching lives, opening minds.

Higher education

www2.isep.ipp.pt/agrima

Disclaimer

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the Portuguese National Agency for Erasmus+, Education and Training (PNA). Neither the European Union nor the PNA can be held responsible for them.

Agri-food Waste Management for Sustainable bio-economy through Higher Education curricula and upskilling

Enriching lives, opening minds.

Higher education

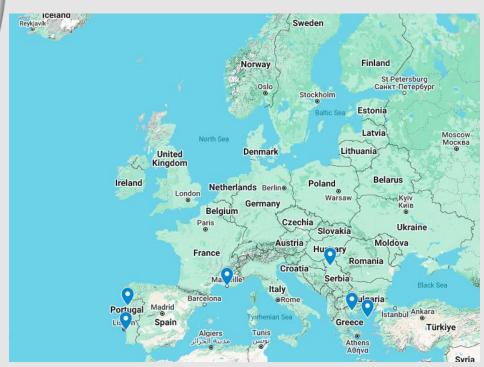
www2.isep.ipp.pt/agrima

Disclaimer

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the Portuguese National Agency for Erasmus+, Education and Training (PNA). Neither the European Union nor the PNA can be held responsible for them.

Goals

AGRIMA aims to foster universities' capacity building for the green transition through innovative practices and higher education curricula updating in agri-food waste management for the circular bioeconomy.


AGRIMA addresses:

- 1. Advancing pedagogical methods for industrial agri-food waste valorisation based on business-academia synergies.
- 2. Integrating citizen science in bio-economy-enhanced waste valorisation as a means of civic engagement and environmental advocacy.

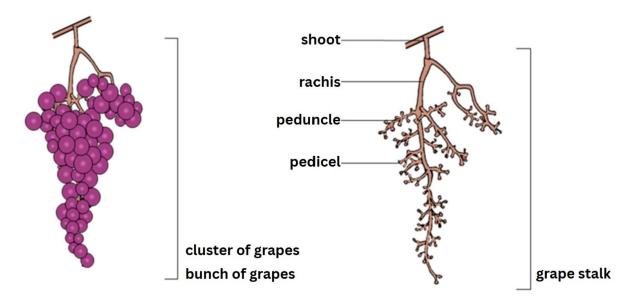
Partners

1	Introduction
2	Materials and methods
3	Results
4	Conclusion
5	Future prospects

Introduction

Background information

- Portugal: 3.1 % of global wine production (2024)
- Challenges in waste management
- √ 30 % of the original grape weight → by-products.
 - Grape pomace, grape stalks and wastewater
 - Fertilizer or animal food
 - Rich in bioactive compounds



Introduction

Objective and scope

- Develop and optimize a green extraction method
- Recovery of polyphenolic compounds from grape stalks
- Ecological and economic benefits

Materials and methods

Overview of the main phases

Phase 1: Identification of the most significant factors affecting solid-liquid extraction (SLE)

Phase 2: Determination of SLE optimal extraction conditions

Phase 3: Assessment of extraction methods and grape varieties influence on antioxidant properties

Phase 1: Identification of the most significant factors affecting SLE

- Reducing the total number of experiments in next phases;
- Factors:

Solvent concentration
Extraction time
Extraction temperature
Solid-lo-Liquid Ration
Stirring spreed

TPC results determine the influence of each factor

Phase 2: Determination of SLE optimal extraction conditions

- Response surface methodology (RSM)
 - Model potential curvature and fine-tune the significant variables
- Significant variables
 - Solvent concentration
 - Extraction temperature
 - Solid-to-liquid ratio

TPC determination

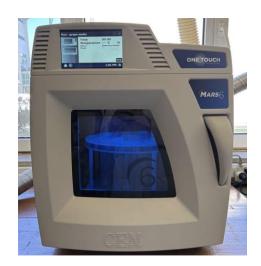
Phase 3: Assessment of extraction methods and grape varieties influence on antioxidant properties

Advanced extraction techniques

Ultrasound-assisted extraction

Time (min)
10
20
10
20

Microwave-assisted extraction (MAE)


Temperature (°C)	Time (min)
40	10
40	20
60	10
60	20

Subcritical water extraction (SWE)

Temperature (°C)	Pressure (bar)
120	10
120	20
150	10
150	20

(Time: 20 minutes)

Phase 3: Assessment of extraction methods and grape varieties influence on antioxidant properties

- Grape varieties
 - Tinta Miúda
 - Cerceal Branco
- Evaluation assays
 - TPC (mg GAE/g dw)
 - Ferric reducing antioxidant power (FRAP) (mg AAE/g dw)
 - ABTS radical scavenging activity (mg AAE/g dw)

Phase 1: Identification of the most significants factors affecting SLE

- Solvent concentration (% ethanol) and solid-to-liquid ratio
 - Statistically significant effect
 - Most influential effects
- Extraction temperature
 - Moderate but statistically significant effect
- Extraction time and stirring speed
 - No statistically significant effect
- Two-way interaction between solvent concentration and solidto-liquid ratio
 - Statistically significant effect

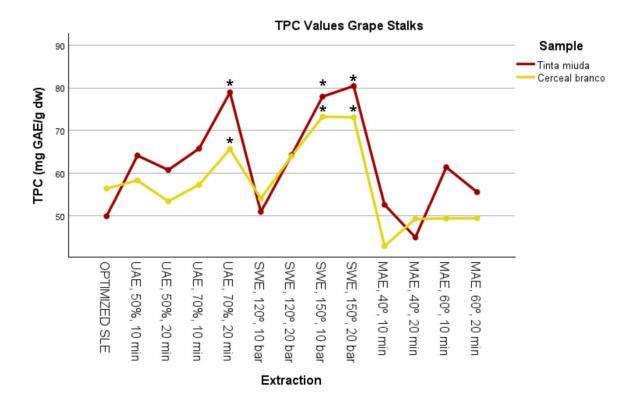
Phase 1: Identification of the most significant factors affecting SLE

	Solvent	Solid-to-	Extraction	Extraction	Stirring speed	TPC
	concentration	liquid ratio	temperature	Time	(rpm)	(mg GAE/g dw)
	(% EtOH)	(g/mL)	(°C)	(min)		
1	80	1:100	30	120	250	23.0
2	40	1:100	60	120	250	53.0
3	80	1:20	30	30	250	11.8
4	40	1:20	60	30	250	14.8
5	40	1:20	30	30	500	14.6
6	40	1:20	30	120	250	15.2
7	40	1:100	60	30	500	45.7
8	40	1:100	30	120	500	43.3
9	40	1:20	6	120	500	14.5
10	40	1:100	30	30	250	39.4
11	80	1:20	60	120	250	14.0
12	80	1:20	60	30	500	12.8
13	80	1:100	60	30	250	28.1
14	80	1:100	30	30	500	17.9
15	80	1:100	60	120	500	33.5
16	80	1:20	30	120	500	12.5

Phase 2: Determination of SLE optimal extraction conditions

Optimization results for TPC extraction:

				TPC	_
				(mg GAE/g dw)	
Solution	Solvent	Ratio	Temperature	Fit	Composite
	(% ethanol)		(° C)		desirability
1	43.6364	1:150	75	53.1907	0.997053
2	43.6364	1:150	60	50.4847	0.924115

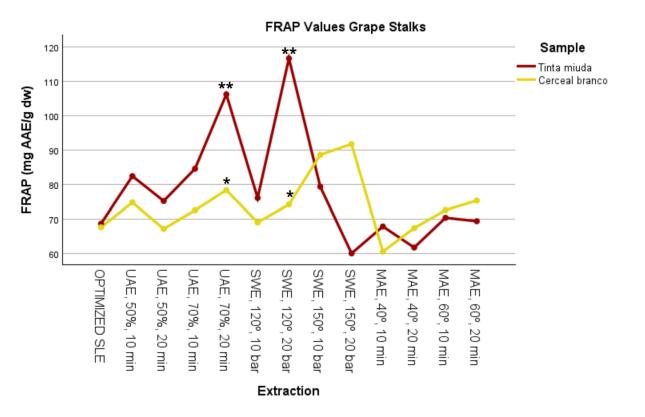

Phase 2: Determination of SLE optimal extraction conditions

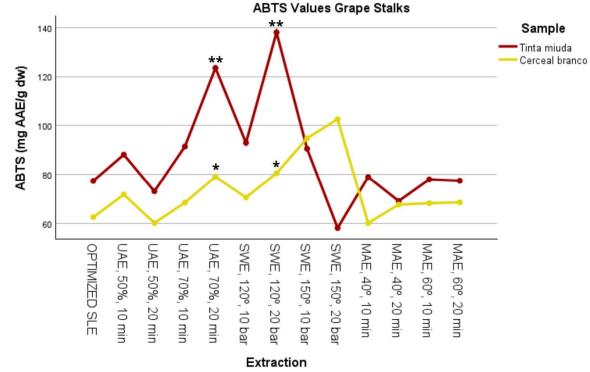
Optimization results for TPC extraction:

				TPC (mg GAE/g dw)	
Solution	Solvent (% ethanol)	Ratio	Temperature (° C)	Fit	Composite desirability
1	43.6364	1:150	75	53.1907	0.997053
2	43.6364	1:150	60	50.4847	0.924115

- Lower extraction temperature is preferred:
 - Reduction of energy consumption
 - Decrease of the risk of polyphenol degradation
 - Reduction in TPC yield and composite desirability is acceptable compared to the advantages
- Small difference (1.21%) between predicted and observed (49.87 mg GAE/g dw) TPC

Phase 3: Assessment of extraction methods and grape varieties influence on antioxidant properties





Results

Phase 3: Assessment of extraction methods and grape varieties influence on antioxidant properties

Phase 3: Assessment of extraction methods and grape varieties influence on antioxidant properties

Tinta Miúda grape stalk extracts:

	TPC	ABTS	FRAP
TPC	1	0,264*	0,391**
ABTS	0,264*	1	0,947**
FRAP	0,391**	0,947**	1

The color intensity represents the strength of the correlation, with darker shades indicating higher correlation. * The correlation is significant at the 0.05 level (2 ends). ** The correlation is significant at the 0.01 level (2 ends).

Cerceal Branco grape stalk extracts:

	TPC	ABTS	FRAP
TPC	1	0,827**	0,833**
ABTS	0,827**	1	0,839**
FRAP	0,833**	0,839**	1

The color intensity represents the strength of the correlation, with darker shades indicating higher correlation. ** The correlation is significant at the 0.01 level (2 ends).

Greenness evaluation

Conclusion

Conclusion

✓ UAE

- Amplitude: 70 %

Extraction time: 20 minutes

Solvent concentration: 43.6 % ethanol

Solid-to-liquid ratio: 1:150

- Tinta Miúda: TPC: 78.9 mg GAE/g dw, ABTS: 123.5 mg AAE/g dw, and FRAP: 106.2 mg AAE/g dw

- Cerceal Branco: TPC: 65.6 mg GAE/g dw, ABTS: 79.1 mg AAE/g dw, and FRAP: 78.3 mg AAE/g dw

Conclusion

Conclusion

- Variation in antioxidant properties among grape stalk varieties
- Potential as valuable and sustainable source of natural antioxidants
- Role of green extraction techniques in valorizing by-products

Future prospects

Future prospects

Future prospects

- HPLC analysis
- Incorporation of the extracts into a food product
 - Gummy bears
 - Yogurt

The Hidden Treasure in Grape Stalks: A Green Extraction Quest

Mariana Teixeira

09/07/2025

Supervisors:

Dr. Manuela Moreira

Dr. Cristina Soares

Dr. Cristina Delerue-Matos

Dr. Hendrikus Nouws

Acknowledgments: This work received financial support from the PT national funds (FCT/MECI, Fundação para a Ciência e Tecnologia and Ministério da Educação, Ciência e Inovação) through the project UID/50006 -Laboratório Associado para a Química Verde - Tecnologias e Processos Limpos. Manuela M. Moreira (2023.05993.CEECIND/CP2842/CT0009, DOI: 10.54499/2023.05993.CEECIND/CP2842/CT0009) is thankful for her contract financed by FCT/MCTES—CEEC Individual Program Contract and to REQUIMTE/LAQV. The supply of grape stalks is acknowledged to AVIPE.

